《自考视频课程》名师讲解,轻松易懂,助您轻松上岸!低至199元/科!
类比是根据两个对象之间在某些方面的相同或相似,从而推出它们在其他方面也可能相同或相似,类比法是初中重要的教学方法,数学中的许多定理、公式和法则是通过类比得到的,在解题中寻找问题的线索,往往也借助于类比方法,从而达到启发思路的目的。下面根据自己的教学实践,谈几点运用类比法的做法。
一、解一元一次不等式与解一元一次方程类比
在讲解“一元一次不等式”时,学生由于刚刚接触不等式,对不等式本来就不是很熟悉,对不等式的解法也就感到陌生。如果照着上的例题直接讲解,学生可能会感到有点模糊,不那么得心应手,不知道为什么要这样来解题,就会照着按部就班的做题,以至于没有掌握解题的方法,思维会有点混乱。为了让学生一开始就能从根本上弄清楚一元一次不等式的解法,能明白每一步的算理,真正地掌握一种学习的方法,在讲授这节内容时,我类比了解一元一次方程的方法,这样的讲解学生接受起来就容易多了。例如:
解一元一次方程:2x+6=3-x
解:移项得: 2 x+ x=3-6
合并同类项得: 3 x=-3
系数化为1得: x =-1
解一元一次不等式: 2x+6<3-x
解:移项得: 2 x+ x<3-6
合并同类项得: 3 x<-3
两边都除以3得: x <-1
学生只要注意最后一步:系数化为1时,不等式的两边如果都乘以或除以同一个负数时,不等号的方向改变即可。通过这种类比,学生掌握起来就容易得多了。
二、分解因式与分解因数类比
在讲解“分解因式”这节内容时,我先提出两个问题:
问题1: 993-99能被100整除吗?你是怎样想的?与同伴一起交流。
解:因为993-99=99×992-99×1 =99×(992-1)=99×9800
=98×99×100
这里,我们把一个数式化成了几个数的乘积的形式,所以993-99能被100整除。
问题2:你能尝试把a3-a化成几个整式的乘积的形式吗?
解:a3 -a= a×a2- a×1 = a(a2-1)
对问题1,学生做起来不难。这是一个分解因数的问题。经过这样的类比后,对于问题2大部分学生都能够独立完成了。如果没有这样的类比,直接给出问题2,那么学生学起来就会很困难。因为对于大多数初中学生来说,感受数字比感受字母容易得多,通过问题1来类比问题2,在学生原有的基础上可以使学生对于学会分解因式感到很容易,由此让学生明白了怎样将一个多项式化为几个整式的积的形式,知道了什么是分解因式。
三、分式的运算与分数类比
四、相似三角形与全等三角形类比
在讲解相似三角形判定定理可类比全等三角形得到,全等形与相似形的关系:全等三角形是相似三角形,当相似 比值K=l时的特例,全等与相似条件的比较:
(1)两角相等——两三角形相似
两角相等,夹边相等——两三角形全等;
(2)两边成比例、夹角相等——两三角形相似
两边相等,夹角相等——两三角形全等;
(3)三边对应成比例——两三角形相似
三边对应相等——两三角形全等。
此外,在多项式除法与多位数除法,开立方与开平方,中心对称与轴对称,扇形面积公式与三角形面积公式等等,都可以通过类比和对比进行教学,这种数学方法的教学,学生在学习过程中能较轻松地接受新知识,在实践中也证明,这种类比和对比的数学方法,学生掌握的知识扎实,理解也较好。因此,类比思想是数学学习中不可缺少的一种数学方法。它可以使一些问题简单化,也可以使我们的思维更加广阔。2150
本文标签:广州自考 理科类 类比在数学教学中的应用
转载请注明:文章转载自(http://www.guangzhouzikao.com)
以上是广州自考网(www.guangzhouzikao.com)整理的“类比在数学教学中的应用”相关资讯,如果您还想了解更多广州自考网、广州自考报名和广州自考本科的资讯,请浏览本站其它文章。
《广州自考网》免责声明:
1、由于考试政策等各方面情况的调整与变化,本网提供的考试信息仅供参考,最终考试信息请以省考试院及院校官方发布的信息为准。
2、本站内容部分信息均来源网络收集整理或来源出处标注为其它媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com